Projecte llegit
Títol: Numerical Study and Optimization of a Micro NREL Horizontal Axis Wind Turbine Using Plasma Actuator
Estudiants que han llegit aquest projecte:
HAN, LINFEI (data lectura: 31-10-2025)- Cerca aquest projecte a Bibliotècnica
HAN, LINFEI (data lectura: 31-10-2025)Director/a: MELLIBOVSKY ELSTEIN, FERNANDO PABLO
Departament: FIS
Títol: Numerical Study and Optimization of a Micro NREL Horizontal Axis Wind Turbine Using Plasma Actuator
Data inici oferta: 28-02-2025 Data finalització oferta: 31-10-2025
Estudis d'assignació del projecte:
GR ENG SIST AEROESP
| Tipus: Individual | |
| Lloc de realització: Fora UPC | |
| Supervisor/a extern: Miguel Angel Cota | |
| Institució/Empresa: YPlasma | |
| Titulació del Director/a: Mechanical Engineering | |
| Segon director/a (UPC): BERGADÀ GRANYÓ, JOSEP MARIA | |
| Paraules clau: | |
| Active Flow Control, Wind Turbine, DBD Plasma Actuator | |
| Descripció del contingut i pla d'activitats: | |
| Dielectric Barrier Discharge (DBD) plasma actuators are a promising Active Flow Control technology. However, limited research has been conducted on their application at relatively high Reynolds numbers. This project investigates their effectiveness in enhancing the performance of a small-scale horizontal-axis wind turbine.
The study will be carried out in several phases: 1. Define the small-scale wind turbine and its operating conditions. 2. Perform numerical simulations of aerodynamic properties along the blade sections. 3. Identify blade sections suffering from stall and determine actuator deployment strategies. 4. Implement the plasma actuator model in OpenFOAM and validate its effect on flow control. 5. Optimize actuator placement and evaluate overall wind turbine performance improvements. The project will focus on computational modeling and simulation using OpenFOAM. Both the physical modeling of the plasma actuator and the CFD methodologies will be explored. |
|
| Overview (resum en anglès): | |
| This work presents a numerical study on the aerodynamic optimization of a micro-scale NREL S826 wind turbine using a dielectric barrier discharge (DBD) plasma actuator. The objective is to evaluate the feasibility of plasma-based active flow control as a method to enhance aerodynamic efficiency and power extraction. The Shyy model was implemented in ANSYS Fluent via a user-defined function (UDF) to provide a physically consistent representation of the induced body force.
The parametric analysis shows that increasing voltage and frequency improves lift and efficiency up to an optimal range around 5 kV and 5 kHz, while the best actuator position is near x/c¿0.28, yielding up to a 50 % increase in local power coefficient. The flow analysis confirms that plasma actuation energizes the boundary layer and suppresses separation, resulting in higher lift and lower drag. These results demonstrate the potential of DBD plasma actuators for scalable, efficient, and sustainable active flow control in small wind turbine applications. |
|