Projecte llegit
Títol: Aplicación de la espectroscopia de impedancia eléctrica en la caracterización y monitorización del estado de componentes biológicos y no biológicos
Estudiants que han llegit aquest projecte:
BARRIOS PÉREZ, SANTIAGO PABLO (data lectura: 30-10-2025)- Cerca aquest projecte a Bibliotècnica
BARRIOS PÉREZ, SANTIAGO PABLO (data lectura: 30-10-2025)- Cerca aquest projecte a Bibliotècnica
BARRIOS PÉREZ, SANTIAGO PABLO (data lectura: 30-10-2025)
BARRIOS PÉREZ, SANTIAGO PABLO (data lectura: 30-10-2025)Director/a: SERRANO FINETTI, ERNESTO
Departament: EEL
Títol: Aplicación de la espectroscopia de impedancia eléctrica en la caracterización y monitorización del estado de componentes biológicos y no biológicos
Data inici oferta: 23-01-2025 Data finalització oferta: 10-02-2025
Estudis d'assignació del projecte:
DG ENG AERO/SIS TEL
| Tipus: Individual | |
| Lloc de realització: EETAC | |
| Segon director/a (UPC): CASAS PIEDRAFITA, OSCAR | |
| Paraules clau: | |
| Espectroscopia de Impedancia Eléctrica, Sensores, Frontales Analógicos, Matlab, Firmware, C | |
| Descripció del contingut i pla d'activitats: | |
| 1. Estudio de trabajos sobre este tipo de sistemas cerrados, con aplicación aeroespacial. Plant and microbial science and technology as cornerstones to Bioregenerative Life Support Systems in space.
2. Estudio de la aplicación de la EIS (electrical impedance spectroscopy) para caracterizar tejidos biológicos, y para estudiar el estado de salud de una batería. 3. Estudio del ajuste del espectro de impedancia a un circuito eléctrico equivalente 4. Aprendizaje del uso de los shields AD5940BIOZ y AD5941BATZ. Control via Arduino. 5. Desarrollo de una aplicación en MatLab para la toma de medidas y procesamiento 6. Automatización del ajuste de las medidas al modelo, también en Matlab 7. Verificación: comparar medidas hechas con los shields y con un analizador de impedancias (ISX-3 de Sciospec), sobre un phantom pasivo 8. Validación de medidas en plantas y baterías. |
|
| Overview (resum en anglès): | |
| Electrical Impedance Spectroscopy (EIS) constitutes a fundamental non-destructive characterization technique for analyzing complex electrochemical systems, with critical applications in lithium-ion battery health monitoring and biological tissue characterization. However, commercial impedance analyzers present high costs that restrict access to educational institutions and research groups with limited budgets. This work presents the design, development, and validation of a low-cost impedance spectroscopy system based on AD5940BIOZ and AD5941BATZ analog front-ends from Analog Devices integrated with an ESP32-S3 microcontroller, enabling measurements in both batteries and biological materials through a unified modular architecture. The project was structured in three main phases. First, an exhaustive review of the state of the art of EIS applied to batteries and biological tissues was conducted, with emphasis on aerospace medicine applications, including body fluid monitoring under +Gz accelerations, hypoxia detection through cerebral bioimpedance, and wearable systems for physiological monitoring in microgravity. Second, a complete software infrastructure was implemented including modular C firmware for the ESP32 capable of operating both analog front-ends through layered abstraction, a MATLAB application with graphical interface integrating real-time data acquisition, visualization through Nyquist and Bode diagrams, dataset management with metadata, and automated fitting to equivalent circuit models, plus an MQTT server hosted on Raspberry Pi for remote data analysis. Third, experimental validation was performed comparing measurements against a Sciospec ISX-3 reference analyzer using passive circuits, commercial batteries, and plant leaves as biological phantoms. Results demonstrate that the system achieves precision relative to commercial equipment in the 10Hz-200kHz range for RC circuits, with a material cost below 1000 EUR, representing 2-10% of the cost of professional analyzers. The modular firmware and MATLAB application constitute transferable assets designed to be used by future researchers, facilitating the democratization of access to impedance spectroscopy technology. Sustainability analysis reveals a positive balance in economic and social dimensions, highlighting the contribution to technological accessibility. Main limitations include the loss of analog front-ends during development and dependence on proprietary MATLAB software, although mitigated through academic licenses. The work establishes solid foundations for future extensions toward aerospace physiological monitoring applications, advanced battery management, and complex material characterization. | |