CBL - Campus del Baix Llobregat

Projecte llegit

Títol: Feasibility study on the use of drone for soil moisture estimation


Estudiants que han llegit aquest projecte:


Director/a: ESPONA DONÉS, MARGARIDA

Departament: MAT

Títol: Feasibility study on the use of drone for soil moisture estimation

Data inici oferta: 05-02-2025     Data finalització oferta: 05-10-2025



Estudis d'assignació del projecte:
    MU DRONS
Tipus: Individual
 
Lloc de realització: Fora UPC    
 
        Supervisor/a extern: Eulàlia Parés
        Institució/Empresa: Centre Tecnològic de Telecomunicacions d
        Titulació del Director/a: PhD
 
Paraules clau:
UAV; Vegetation indices; Soil moisture; QGIS; Multispectral imagery
 
Descripció del contingut i pla d'activitats:
 
Overview (resum en anglès):
Soil moisture is a key parameter in agriculture, hydrology, and environmental monitoring. Traditional measurement methods-such as ground-based sensors and satellite remote sensing-face limitations in terms of spatial resolution, cost, or operational convenience. With the continuous advancement of UAV technology and lightweight sensors, high-resolution and cost-effective soil moisture monitoring using UAVs has become feasible.

This study aims to explore the feasibility of estimating soil moisture using UAVs, with a focus on evaluating their technical feasibility and system performance. The research includes a literature review and methodological study, selection and assessment of UAV platforms and sensors, and processing and performance analysis based on open-source data. By using QGIS tools to process multispectral imagery and calculate various vegetation indices (such as NDVI, NDWI, SAVI, and PDI), the results indicate that UAVs possess strong potential for multispectral imaging and vegetation index analysis, which can be used to indirectly infer the spatial distribution of soil moisture.

This study verifies the effectiveness of UAV remote sensing technology through the processing and analysis of two open datasets: the SiDroForest dataset (covering the Siberian boreal forest region) and the Côte d'Ivoire cocoa plantation dataset. Both datasets were acquired using UAVs equipped with RGB and multispectral cameras. Band calculations and vegetation index inversions-including NDVI, NDWI, SAVI, and PDI-were performed using the QGIS platform to generate multi-indicator visualization maps.

The analysis results demonstrate that different vegetation indices perform well in bare soil identification, assessment of water stress in vegetated areas, and extraction of spatial heterogeneity features, providing an effective basis for the indirect estimation of soil moisture.


© CBLTIC Campus del Baix Llobregat - UPC