CBL - Campus del Baix Llobregat

Projecte llegit

Títol: Estudi del comportament farmacocinètic de l'isotop Actini-225 en l'organisme


Estudiant que ha llegit aquest projecte:


Tutor/a o Cotutor/a: LOPEZ CODINA, DANIEL

Departament: FIS

Títol: Estudi del comportament farmacocinètic de l'isotop Actini-225 en l'organisme

Data inici oferta: 21-01-2025      Data finalització oferta: 21-09-2025


Estudis d'assignació del projecte:
    GR ENG SIS BIOLÒG 23

Lloc de realització:
EEABB

Segon tutor/a (UPC): PRATS SOLER, CLARA
Segon tutor/a extern: Antoni Castel (Hospital Quironsalut)

Paraules clau:
Radiofísica, Càncer, Isotops radioactius

Descripció del contingut i pla d'activitats:
Treball de col·laboració amb l'Hospital Quironsalut Barcelona. El treball serà codirigit amb el radiofísic Antoni Castel.

S'estudiaran el comportament farmacocinètic de l'isòtop Actini-223 en l'organisme per a tractaments radiològics.

Pla d'activitats:
- Recerca bibliogràfica
- Anàlisi de les eines necessàries per l'aplicabilitat dels procediments.
- Programació de les eines

Overview (resum en anglès): The radionuclide Actinium-225 (²²¿Ac) is a multiple alpha emitter with high cytotoxicity and short penetration, making it ideal for the destruction of micrometastases and resistant tumor cells, while minimizing damage to healthy tissue. It is currently a potential therapeutic agent in nuclear medicine, with particular emphasis on its use in targeted alpha particle therapy.
An extensive literature review has initially been conducted on the current applications of ²²¿Ac, including the main associated radiopharmaceuticals (such as [²²¿Ac]Ac-PSMA-617 and [²²¿Ac]Ac-DOTATATE), its decay chains, and its therapeutic applications in tumors such as castration-resistant metastatic prostate cancer or neuroendocrine tumors.
At the methodological level, a computational tool has been developed in MATLAB based on the MIRD dosimetric model to simulate biodistribution and absorbed dose in different organs. Several models have been implemented to study its behavior (in situ, complete, partial, and delayed redistribution), and a hypothetical clinical scenario of multidose treatment has been modeled. Additionally, to expand the analysis, a stochastic version of the model was created to simulate 100 patients with physiological variability, adding realism and robustness to the obtained results.
The results show that the tumor receives the highest dose in all models, while critical organs such as the kidneys, liver, and bone marrow may accumulate significant doses depending on the redistribution of the daughter radionuclides. The differences between models allow for risk scenario evaluation and highlight the need for precise radiopharmaceutical and chelating vector design. The comparison between the individual and multipatient models confirms that physiological variability moderately affects the dose but does not alter overall trends.
In conclusion, the work provides a comprehensive overview of the therapeutic use of ²²¿Ac, combining physical, radiobiological, and clinical foundations, and demonstrates the usefulness of computational modeling for optimizing alpha radionuclide therapy.

Aquest projecte està relacionat amb l'adaptació al Canvi Climatic? No

Aquest projecte està relacionat amb la digitalització del seu àmbit de treball?


© CBLTIC Campus del Baix Llobregat - UPC