CBL - Campus del Baix Llobregat

Projecte matriculat

Títol: RFI mitigation of Synthetic Aperture Interferometric Radiometer (SAIR) using Empirical Mode Decomposition (EMD)


Director/a: PARK, HYUK

Departament: FIS

Títol: RFI mitigation of Synthetic Aperture Interferometric Radiometer (SAIR) using Empirical Mode Decomposition (EMD)

Data inici oferta: 03-02-2025     Data finalització oferta: 03-10-2025



Estudis d'assignació del projecte:
    GR ENG SIST AEROESP
Tipus: Individual
 
Lloc de realització: EETAC
 
Paraules clau:
RFI, Synthetic Aperture Radiometer, SMOS
 
Descripció del contingut i pla d'activitats:
- **OBJECTIVES:**

This study aims to develop a novel approach for mitigating Radio Frequency Interference (RFI) in SAIR images using Two-Dimensional Empirical Mode Decomposition (2D-EMD). The specific objectives include:

1. Evaluating the suitability of 2D-EMD for RFI mitigation in remote sensing signals.
2. Developing adaptive 2D-EMD algorithms to adjust dynamically to specific RFI patterns.
3. Assessing the performance of 2D-EMD compared to existing methods, focusing on signal-to-noise ratio improvement and data quality enhancement.
4. Validating the results through simulated scenarios and real-world datasets (e.g., SMOS data).

The findings will contribute to improving the quality of remote sensing data affected by RFI.

- **METHODOLOGY:**

To achieve the research objectives, the methodology follows these steps:

- Study and implement EMD and 2D-EMD.
- Acquire SMOS images contaminated with RFI or simulated images.
- Apply 2D-EMD to the images and analyze the results.
- Assess results and improve the algorithm.
- Compare 2D-EMD with other SMOS RFI mitigation methods.

The research will leverage previous work, including the **SAIR/SMOS simulator (SEPS/SAIRPS)**, RFI-contaminated SMOS images from the **Barcelona Expert Center (BEC)**, and **subspace RFI mitigation algorithms** for comparison.

- **EXPECTED RESULTS:**

This research aims to enhance **SMOS data quality** through **2D-EMD RFI mitigation**, leading to:

1. **Improved Soil Moisture and Ocean Salinity Retrievals** - Reducing RFI artifacts will enhance measurement accuracy, providing more reliable insights into Earth's surface and ocean conditions.
2. **Increased Data Consistency** - The method ensures uniform data quality across different regions and environmental conditions, supporting long-term monitoring and trend analysis.
3. **Adaptability to Changing RFI Environments** - The adaptive algorithm can respond to evolving RFI sources, ensuring sustained SMOS data reliability in dynamic technological landscapes.
 
Orientació a l'estudiant:
 
 
 
Horari d'atenció a estudiants per a l'assignació de projecte:

© CBLTIC Campus del Baix Llobregat - UPC